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Stéphane Glondu
ENS de Cachan∗

September 3, 2006

1 Introduction

Many computers are interconnected through networks, the biggest of them being
Internet. Communications over these networks are ruled by protocols: physical
networks are just wires (or radio waves) linking computers, providing channels
where data can be transmitted; protocols define how data are formatted to
go through these channels, and also provide additional features such as error
detection and correction.

More precisely, a protocol is a sequence of messages exchanged between (two
or more) principals. A principal can be a computer, but also—more generally—a
(human) user, a process, a server, etc. Sometimes, the identities of the principals
involved are important: one must be sure of the other’s identity to proceed. For
example, when you connect to your bank’s website, you want be sure that you
are really talking to your bank and that nobody is spying on you. You cannot
just assume that there is an armored pipe between you and your bank: actually,
your messages must go through several intermediate entities (wires, switches,
routers), and each of them can be watched or controlled by a possibly malicious
intruder.

A protocol resistant to intermediate malicious actions is a security protocol.
Two main properties are targeted when designing such protocols: authentication
and secrecy. These are achieved using cryptography (public-key, shared-key or
both), so such protocols are also called cryptographic protocols. This report is
mainly about verification of the security properties of cryptographic protocols.
We consider especially authentication protocols, for which Clark and Jacob give
a survey in [9]1.

The main target of this report is to present and compare some formal ap-
proaches to protocol verification (based on proof systems), and to present in
detail a semantics for one of them and prove the corresponding soundness.

In this report, formal frameworks are especially considered, where some
simplifying assumptions—such as perfect cryptography, uniquely interpretable
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1This survey might seem quite old now—many analysis methods have been published since

then—but it is still a good introduction to authentication protocols.
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terms—allow the use of logic-related tool to prove properties. Many such meth-
ods have been proposed, following the work of Dolev and Yao [12], and Burrows,
Abadi and Needham [5]. I will present in this report some of them, and use the
famous Needham-Schroeder public key protocol (NSPK) [23] as an example.

Section 2 presents some formal approaches to protocol verification, namely
BAN logic [5], strand spaces [14], PCL [13], MSR [8] and BPL [17]. In section 3, I
give a (very short) introduction to other approaches. BPL is further investigated
in section 4.

2 Formal approaches to protocol verification

2.1 The agreement property and the Needham-Schroeder
public key protocol

This protocol was introduced by Needham and Schroeder in 1978 [23]. It uses
public key cryptography. Here, we suppose that the principals know each other’s
public key. We present it in the usual—intuitive—way:

A→ B : {n1, A}KB

B → A : {n1, n2}KA

A→ B : {n2}KB

The fist line means “A sends to B the tuple (n1, A) encrypted by B’s public
key”. At the end of a run, A and B are supposed to be mutually authenticated,
and n1 and n2 are known only by them. A and B are commonly called the
initiator and the responder, respectively.

More precisely, authentication can be stated in terms of the agreement prop-
erty as explained in [14]:

Each time a principal B completes a run of the protocol as responder
using ~x, apparently with A, then there is a unique run of the protocol
with the principal A as initiator using ~x, apparently with B.

Usually, some additional properties expressing the honesty of the participants
are also added. If this and the converse property for the initiator hold, the
agreement property holds.

The NSPK protocol was thought to be secure for several years, but Lowe
eventually found an attack in 1995 [21]:

A→ E : {n1, A}KE

E → B : {n1, A}KB

B → E : {n1, n2}KA

E → A : {n1, n2}KA

A→ E : {n2}KE

E → B : {n2}KB

This is considered as an attack because B thinks he is communicating with A
whereas he is actually talking to E. Note that A and B are both honest in
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the sense that they follow faithfully the specification of the protocol and their
private keys are not compromised.

Lowe proposed to add B’s identity to the second message. This variant
is usually referred to as the Needham-Shroeder-Lowe (NSL) protocol, and is
currently thought to be secure.

2.2 BAN logic

Introduced by Burrows, Abadi and Needham in [5], BAN logic is a predicate
logic for analyzing authentication protocols. Its goal is to prove authentication
properties about honest principals; secrecy properties are not targeted.

To analyze a protocol in this logic, one first needs to “idealize” it. The modi-
fied messages—which may include BAN formulas—are supposed to encapsulate
the “intended” logical meaning of the messages. Even though intruders are
not explicitly considered, this approach allows to find flaws—not automatically,
though—in some protocols such as the Needham-Schroeder shared key protocol
[23] (not the one mentioned above) or the CCIT X.509 protocol [7]. Honesty
is not considered explicitly either; jurisdiction formulas are used instead—they
can be thought as statements of trust. Complete proofs can be mechanically
checked.

However, it has limits as we shall see with the Needham-Schroeder public
key protocol. Indeed, the idealized version of this protocol—as given in [5]—is
the following:

A→ B : {n1}KB

B → A :
{〈

A
n2

 B

〉
n1

}
KA

A→ B :
{〈

A
n1

 B,B |≡A

n2

 B

〉
n2

}
KB

The process of idealization consists mainly in removing all unnecessary (for
the logical inference) data, and turning needed raw data into meaningful BAN
formulas. Here, in the second message, B claims that n2 is a secret shared
between A and B, and uses n1 as a proof of his identity. The third message
is an acknowledgment that A effectively received n2. A actually claims in that
message that n1 is a secret shared between A and B, and B believes (denoted
by |≡) that n2 is a secret shared between A and B. n2 is used as a proof of A’s
identity. In this framework, principals are supposed to believe the messages they
generate, and proofs are carried out in a Hoare-like [19] fashion: if the protocol
consists of messages m1, . . . ,mn, a proof is a sequence of formulas ϕ0, . . . , ϕn,
where ϕn+1 is obtained from ϕn and the message mn+1, ϕ0 representing the
initial assumptions. For more detailed information, see [5].

Using standard assumptions—especially the freshness of n1 and n2—the fol-
lowing formulas are proved:

A |≡B |≡A
n2

 B B |≡A |≡A

n1

 B

at the end of a run of the protocol, which is basically an expression of mutual
authentication. However, we have seen that this protocol is not correct, so what
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is wrong? Actually, in Lowe’s attack, the first formula is intuitively false; the
right formula should be

A |≡ E |≡A
n2

 E

If we try to analyze Lowe’s variant, we realize that both protocols may
have exactly the same idealized version. This is one weakness of BAN logic:
the idealization process may add too much information to a protocol. Note,
however, that if we first had come up with the idealized protocol, and then
converted it to a real one using the recommendations in [5], we would probably
have got something closer to Lowe’s fix.

Besides, BAN logic does not have inference rules involving directly several
steps of a protocol. Each message provides new facts, which are then combined
in a purely logical fashion, although some multi-step deductions may be encap-
sulated in the idealization process. BAN logic cannot deal with properties such
as outgoing tests of [16].

2.3 Strand spaces

Strand spaces were introduced by Thayer, Herzog and Guttman in [14]. Unlike
BAN logic, there is no idealization step: the reasoning is made directly on the
messages of the protocol itself. Each role is clearly separated: each principal
runs his or her own program (called strand), and the interactions between these
programs are under study. This approach, as described in [14], does not use any
formal logic system—things are proved “by hand”. However, this approach is
the starting point of many formal systems, so it is worth mentioning here.

As an example, the NSPK protocol is modelized by two strands:

Init[A,B, n1, n2] = 〈+ {n1, A}KB
, −{n1, n2}KA

, + {n2}KB
〉

Resp[A,B, n1, n2] =
〈
−{n1, A}KB

, + {n1, n2}KA
, −{n2}KB

〉
Each strand is a sequence of messages prefixed by a + (for an outgoing message)
or a − (for an incoming message). These signed messages can be thought as
particles: reactions between same particles of opposite signs are considered.

Roles being considered as independent entities reacting with each other, the
modelization of an intruder is straightforward: one just needs to add strands
for the intruders abilities. With the presence of the Dolev-Yao intruder, the
agreement property is proved for the NSL protocol. The authors of [14] notice
that the responder’s key may be compromised for the responder’s point of view,
but no key must be compromised for the initiator’s agreement. This proof
does not hold for the original NSPK protocol, but it is not clear whether the
irrelevance could have been used to find an attack.

Even though proofs in this framework can be checked only by humans, this
method has the merit of analysing precisely some hypotheses: the remark about
keys stated above could not have been found in other frameworks where the
integrity of all keys is always assumed.

2.4 Protocol compositional logic (PCL)

Here, we talk about the protocol logic introduced by Durgin, Mitchell and
Pavlovic in [13]. The idea is to provide a logic where proofs of various com-
ponents can be composed in order to get a proof of an elaborate protocol.
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Actually, the same manipulations can also be done in BAN logic, but unlike
BAN, secrecy and authentication properties together are targeted. The authors
borrow strands from [14], and change them in a more realistic way to get what
they call cords. For example, the strand-based roles from section 2.3 for NSPK
protocol become the following cord-based roles:

Init = (X Y ) [(νx)〈{x,X}Y 〉(u)(u/ {x, v}X)〈{v}Y 〉]X
Resp = (X) [(x)(x/ {z, Y }X)(νy)〈{z, y}Y 〉(w)(w/ {y}X)]

X

Here, we identify a principal X and his public key (the private key being X).
Each role is a sequence of actions with a list of static parameters (X and Y
for the initiator). The part between brackets is the cord, the index is the prin-
cipal carrying out the actions. An action consists in generating a new datum
(νx), sending a message 〈m〉, receiving a message (u), or pattern matching
(u/ {x, v}X). Note that no particular form is assumed at receiving points; de-
composition (and decryption) of messages is done by pattern-matching instead.
The same notation is used for traces (with variables instantiated). Compared to
strands spaces, this formalization encapsulates better which items are the pa-
rameters to the protocol, which ones are generated, and which ones come from
the network.

In addition to this process calculus, [13] also introduces a formal logic sys-
tem based on first-order predicate logic, with some protocol-specific predicates:
Sent, Knows, Decrypts (which represent principals’ action or knowledge), Source
(which represent the origin of a datum) and Honest (which modelizes the honesty
of a principal).

Predicate formulas and roles are linked together in modal forms: a role ρ
can be appended a formula φ to indicate that φ is a consequence of the actions
of ρ (this is denoted by ρ φ). This is similar to Hoare logic [19]. For example,
the following axiom:

[(m)]X ∃Y.Sent(Y,m)

means that if some principal X receives a message m, then someone (denoted
by Y ) must have sent that message. They also introduce a “honesty” rule as
an axiom, which allows to link different principals. Intruders are not explicitly
modelized.

For the revised NSL protocol, it is then possible to prove the following:

(B)[(νn)(x)(x/ {m,A}B)〈{m,n,B}A〉(y)(y/ {n}B)]B
Honest(A) ⊃ (CSent(A, {A,m}B) ∧ CSent(A, {n}B)

Here, CSent(A, {n}B) is a shorthand—defined in terms of Knows and Sent—for
A created and sent {n}B . The formula above can be seen as the responder’s
part of the agreement property. It does not hold for the original protocol.

This logic has been considerably improved (for example, temporal opera-
tors are added in [10]) to get what is now called protocol composition logic:
modal forms have the more general, Hoare-like, form ψ ρφ, as in BAN logic.
Under conditions, such modal forms (coming from different protocols) can be
composed in various ways, hence the name. Extensions to this framework have
been applied to the analysis of IEEE 802.11i and TLS in [18]. There even is a
computational semantics for a variant of PCL in [11].

A complete proof in this framework should be mechanically checkable, but
no such concrete result has been released so far.
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2.5 Basic protocol logic (BPL)

I give an overview of this protocol here for completeness. However, it will be in-
vestigated further later. This logic—presented by Hasebe and Okada in [17]—is
an extension of first-order predicate logic with equality and subterm relation.
Its main purpose is to prove authentication properties. Unlike PCL, whose at-
tempt to prove any kind of property results in a complex logic, basic protocol
logic (BPL) remains simple by restricting what can be proved. Another sig-
nificant difference with PCL is the modelization of honesty: indeed, honesty is
no longer an atomic formula, but a compound formula, and there is no “hon-
esty” rule. This simplicity makes the provability of some formulas—called query
forms—decidable. Moreover, a semantic analysis can reveal practical attacks
on flawed protocols.

This theory is recent and still needs improvement. No application to a
practical protocol has been released.

2.6 Multiset rewriting (MSR)

This paragraph is not about a specific system, but rather gives an overview of
a generic method.

Protocols deal with messages witch can be thought of as resources. Hence,
linear-logic-based frameworks may turn out to be useful. This way is explored
by Cervesato, Durgin, Lincoln, Mitchell and Scedrov in [8]: the whole system
(the network, each principal’s memory, etc.) is modelized by a multiset, and
each sending action is modelized by a rewriting rule. In the same way multisets
and rewriting rules can be seen as linear logic formulas, the generation of a nonce
is expressed as an existential quantification on the right hand side; one can use
linear logic tools to analyze a protocol formalized in this way. For example, the
NSPK protocol would become in terms of linear logic formulas:

A0() ( ∃n1.N({n1, A}KB
)⊗A1(B,n1)

B0()⊗N({n1, A}KB
) ( ∃n2.N({n1, n2}KA

)⊗B1(A,n1, n2)

A1(B,n1)⊗N({n1, n2}KA
) ( N({n2}KB

)⊗A2(B,n1, n2)

B1(A,n1, n2)⊗N({n2}KB
) ( B2(A,n1, n2)

Here, the predicates Ai, Bi and N represent the states of A, B and the network,
respectively. With these formulas, one usually proves that unwanted states are
not (or are) reached. This idea has been exploited in an analysis of Kerberos 5
using Isabelle in [6].

3 A word about the computational approach

Even in what is called here the formal approach—where encryption is considered
as an abstract operation—there are other approaches which do not use proof
systems (but, for example, tree automata).

The formal approach presents many advantages such as simple and elegant
proofs, the possibility to use existing logic-related tools and sometimes automa-
tion. However, the assumptions of the formal approach may seem too naive
in real life (consider type flaw attacks). Another research area focuses on the
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cryptographic assumptions and their connection to computation. For exam-
ple, with this computational approach, encryption and decryption are no longer
considered as symbolic operations, but rather as probabilistic algorithms; an in-
truder can be any polynomial-time probabilistic algorithm; security properties
are expressed in terms of probabilities. The computational approach has been
investigated by many researchers since Goldwasser and Micali’s work in [15], for
example by Bellare, Rogaway et al. in [4] and [3].

Many researchers have worked to link both approaches, such as Lincoln,
Mitchell, Mitchell and Scedrov [20], and Abadi and Rogaway [2]. In [2], formal
indistinguishability is related to computational indistiguishability: if two ex-
pressions are equivalent from the point of view of a formal Dolev-Yao adversary
(who cannot guess keys, and can decrypt only with the keys he learns from the
expression itself), then a computational adversary can distinguish them only
with negligible probability, provided the encryption scheme satisfies some prop-
erties. Later, Abadi and Jürjens [1] extend this result to a class of programs
which includes most protocols and consider explicitly passive adversaries in pro-
tocols (eavesdropping). More recently, Micciancio and Warinschi [22] consider
the case of active adversaries.

4 Basic Protocol Logic (BPL)

In this section, I present briefly this logic, and a semantics for which soundness
is proved.

4.1 Language

Sorts and terms The language of BPL is order-sorted, and consists of sorts
name, nonce and message. A,B, . . . , A1, A2, . . . (P,Q, . . . , P1, P2, . . . , resp.) are
constants (variables, resp.) of sort name, which represent principal names,
and N,N ′, . . . , N1, N2, . . . (n, n′, . . . , n1, n2, . . . , resp.) are constants (variables,
resp.) of sort nonce. All terms of sort name and nonce are terms of sort message.
The symbols m,m′, . . . ,m1,m2, . . . are used to denote variables of sort message.
Composed terms of sort message are made by tuples (〈m1, . . . ,mn〉) and encryp-
tion2 ({m}P or {m}P−1). We also use the meta-symbols s, s′, . . . , t, t′, . . . to
denote any term of sort message. We call the set of terms the abstract algebra.
Note that all constants are of sort nonce or name.

Formulas We use the structural predicates s = s′ (equality) and s v s′ (sub-
term relation) and three additional action predicates: P generates n, P receives
m and P sends m. Several action predicates can be combined sequentially to
make a trace formula. We will denote by −→α ≡ α1, . . . , αk a trace formula
(where each αi is an action predicate, and k indicates the length of −→α ). For
−→α ≡ α1, . . . , αk and

−→
β ≡ β1, . . . , βl, we say that

−→
β includes −→α (denoted by

−→α ⊆
−→
β ) if there exists a sequence i1, . . . , ik satisfying 0 < i1 < · · · < ik 6 l and

−→α ≡ βi1 , . . . , βik
.

2We consider only public key cryptography, but this formalization can be extended to
symmetric cryptography as well.
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The formulas (denoted by ϕ,ψ, . . . ) are made by the following grammar:

ϕ ::= −→α | m = m′ | m v m′ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ

Order-preserving merges An order-preserving merge of −→α ≡ α1, . . . , αl

and
−→
β ≡ β1, . . . , βm is a trace formula

−→
δ ≡ δ1, . . . , δn made by the following

rules:

1. δ1 ≡ α1 or β1;

2. for each i (1 6 i < n), if α1, . . . , αj ⊆ δ1, . . . , δi (1 6 j < l) and
β1, . . . , βk ⊆ δ1, . . . , δi (1 6 k < m), then δi+1 ≡ αj+1 or βk+1;

3. if
−→
δ ≡ δ1, . . . , δi, δi+1 . . . , δn is an order-preserving merge of −→α and

−→
β

with δi ≡ δi+1, then
−→
δ′ ≡ δ1, . . . , δi−1, δi+1 . . . , δn is an order-preserving

merge of −→α and
−→
β .

Query forms [17] introduces query forms:

Honest(−→α P ) ∧
−→
β Q ∧Only(

−→
β Q) → −→γ

where −→α P (
−→
β Q, resp.) is a trace formula representing the actions of the role of a

principal P (Q, resp.), Honest(−→α P ) is a formula expressing the honesty of P—
note that in PCL, this is an atomic formula and additional rules are provided—
and Only(

−→
β Q) a formula expressing that Q performs only the actions of

−→
β Q.

The agreement property (for a bounded number of sessions) can be proved with
query forms, and the provabitity of query forms is decidable—this is the main
result of [17]. In the following, we do no longer consider query forms.

4.2 Logic

We extend the usual first-order predicate logic with equality by adding the
following axioms. This axiomatic system is called Basic Protocol Logic.

(I) Axioms of universal sentences over terms When a finite set of lit-
erals {t1 = t′1, . . . , tn = t′n, s1 v s′1, . . . , sj v s′j , u1 6= u′1, . . . , uk 6= u′k, v1 6v
v′1, . . . , vl 6v v′l} is unsatisfiable in the abstract algebra (with the usual interpre-
tation for = and v), then

∀−→x .¬(t1 = t′1 ∧ · · · ∧ tn = t′n ∧ s1 v s′1 ∧ · · · ∧ sj v s′j∧
u1 6= u′1 ∧ · · · ∧ uk 6= u′k ∧ v1 6v v′1 ∧ · · · ∧ vl 6v v′l)

is an axiom, where −→x is the set of variables occurring in the litterals. Note that
the satisfaction problem is decidable in the free term algebra, hence the set of
axioms of type I is recursive.
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(II) Rules for trace formulas We use the following axioms3 for trace for-
mulas:

−→
β → −→α when −→α ⊆

−→
β

−→α ∧
−→
β → −→γ1 ∨ · · · ∨ −→γm

when −→γ1, . . . ,
−→γm is the list of order-preserving

merges of −→α and
−→
β

(III) Non-logical axioms [17] also introduces several non-logical axioms ex-
pressing properties about protocols. Actually, proving a query form is proving
a sequent

Honest(−→α P ),
−→
β Q, Only(

−→
β Q),Γ ` −→γ

where Γ is the set of non-logical axioms. This set of axioms is important when
proving the completeness and the decidability results of [17], but is not impor-
tant here.

4.3 State-based semantics

In [17], a semantics for BPL is given, and completeness for query forms is proved.
This semantics introduces the notion of trace model, a tuple (DP , DN ,

−→α , Φ),
where DP , DN are domains for principals and nonces, Φ is an assignment of
constants and variables, and −→α is a sequence of actions (called trace) which
represents the actions actually performed by the principals).

Here, I reformulate this semantics with sequences of states (called trajecto-
ries) rather than traces and I prove soundness for this semantics. The semantics
is essentially the same, but the different approach is closer to computational
analysis of protocol as described in [2].

Definition 4.3.1 (Structure, interpretation). A structure is a tuple (DP , DN ,−→σ ,Φ), where:

• DP and DN are two non-empty sets. DP is called the principal do-
main, and DN the nonce domain. We denote by DP the set DP ∪
{NetP : P ∈ DP }, where the NetP are new symbols, not in DP . We call
state a mapping from elements of DP to multisets of ground terms of the
multisorted free term algebra over DP and DN (which we call the concrete
algebra).

• Φ maps principal constants to elements of DP , and nonce constants to
elements of DN .

• −→σ is a sequence of states (called trajectory) s0, . . . , sn, such that for all
i < n, there is a unique P ∈ DP and a m such that si+1(P )−si(P ) = {m},
and one of the following holds:

– for all Q ∈ DP \ {P}, si+1(Q) = si(Q)

– P ∈ DP and there is a unique R ∈ DP such that si+1(NetR) =
si(NetR)− {m}, and for all Q ∈ DP \ {P,NetR}, si+1(Q) = si(Q)

3In the original paper, the second axiom was an equivalence, but soundness holds only for
one direction. The completeness result actually uses only the “right” direction.
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S,Φ0 |=i P sends m iff si+1(NetP )− si(NetP ) = {Φ0(m)}

S,Φ0 |=i P generates m
iff si+1(P )− si(P ) = {Φ0(m)}
and si+1(NetQ) = si(NetQ) for all Q ∈ DP

S,Φ0 |=i P receives m
iff si+1(P )− si(P ) = {Φ0(m)}
and si+1(NetQ) = si(NetQ) − {Φ0(m)} for
some Q ∈ DP

S,Φ0 |= α1; . . . ;αk
if there exists a sequence 0 6 p1 < · · · < pk <
n such that, for all pi, S,Φ0 |=pi

αi holds

S,Φ0 |= m = m′ iff Φ0(m) = Φ0(m′)
S,Φ0 |= m v m′ iff Φ0(m) v Φ0(m′)
S,Φ0 |= ¬ϕ iff S,Φ0 |= ϕ does not hold
S,Φ0 |= ϕ1 ∧ ϕ2 iff S,Φ0 |= ϕ1 and S,Φ0 |= ϕ2

S,Φ0 |= ϕ1 ∨ ϕ2 iff S,Φ0 |= ϕ1 or S,Φ0 |= ϕ2

S,Φ0 |= ϕ1 → ϕ2 iff S,Φ0 |= ϕ1 implies S,Φ0 |= ϕ2

S,Φ0 |= ∃x.ϕ iff there exists Φ1 such that Φ0 and Φ1 agree
on all variables except x and S,Φ1 |= ϕ

S,Φ0 |= ∀x.ϕ iff for all Φ1 such that Φ0 and Φ1 agree on all
variables except x, S,Φ1 |= ϕ

Table 1: State-based semantics for BPL

An interpretation is a couple (S,Φ0), where S = (DP , DN ,
−→σ ,Φ) is a structure

and Φ0 maps each variable to DP or DN , depending on its sort. Using Φ, we
extend Φ0 to a morphism from the abstract algebra to the concrete algebra.

Henceforth, when we talk about an interpretation (S,Φ0), we will implicitly
use the notations of definition 4.3.1. Intuitively, a state represents the knowledge
of the network and the principals: if P ∈ DP , m ∈ P means that P either
generated or received m, and m ∈ NetP means that P sent m over the network,
and nobody received it. More formally:

Definition 4.3.2 (Satisfaction). Let (S,Φ0) be an interpretation. In table 1,
we define the relation S,Φ0 |= ϕ, which is read (S,Φ0) satisfies ϕ. We say that
S satisfies ϕ, and we write S |= ϕ, if S,Φ0 |= ϕ for all Φ0. Finally, we say that
a structure M is a model for BPL if it satisfies all non-logical axioms of BPL.

Here is the soundness theorem for this semantics:

Theorem 4.3.3. If Γ ` ∆ is provable, then any interpretation which satisfies
all formulas of Γ also satisfies one formula of ∆.

Proof. We prove this by a standard induction on the proof of Γ ` ∆. Consider
each possible last rule:

• `
−→
β → −→α , with −→α ⊆

−→
β . Suppose S,Φ0 |=

−→
β . If

−→
β ≡ β1, . . . , βk,

then there exists a sequence 0 6 p1 < · · · < pk < n such that, for all pi,
S,Φ0 |=pi βi holds. Moreover, since −→α ⊆

−→
β , there also exists a sequence
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1 6 q1 < · · · < ql 6 k such that −→α ≡ βq1 , . . . , βql
(here, l is the length of

−→α ). Then the sequence pq1 , . . . , pql
meets the requirements for S,Φ0 |= −→α

to hold. Therefore, S,Φ0 |=
−→
β → −→α .

• ` −→α ∧
−→
β → −→γ1 ∨ · · · ∨ −→γm, where −→γ1, . . . ,

−→γm is the list of order-preserving
merges of −→α and

−→
β . Suppose S,Φ0 |= −→α ∧

−→
β , with −→α = α1, . . . , αk

and
−→
β = β1, . . . , βl. Then there exists sequences 0 6 p1 < · · · < pk < n

and 0 6 q1 < · · · < ql < n such that S,Φ0 |=pi αi for all pi, and
S,Φ0 |=qj βj for all qj . Let r1 6 r2 6 · · · 6 rk+l be a sorted version of
p1, . . . , pk, q1, . . . , ql. Let

−→
δ be the action sequence defined by δi = αj if

ri = pj , or δi = βj if ri = qj .

It can be proved that
−→
δ is an order preserving merge of −→α and

−→
β . More-

over, (consecutive) duplicates in r1, . . . , rk+l correspond to consecutive
duplicates in

−→
δ . Indeed, the restrictions required in definition 4.3.1 are

such that, given i, there is a single possible action γ such that S,Φ0 |=i γ.
Therefore, when we remove duplicates from r1, . . . , rk+l and the matching
actions from

−→
δ , we get another order-preserving merge of −→α and

−→
β —

call it
−→
δ′ — and a sequence satisfying the conditions for S,Φ0 |=

−→
δ′ to

hold. Therefore, S,Φ0 |= −→γ1 ∨ · · · ∨ −→γm.

The remaining cases are not specific to BPL and can be proved in the general
setting of first-order predicate logic with equality (see [24]).

5 Summary and possible extensions

In this report, several frameworks for verification of cryptographic protocols
based on proof systems are presented:

• BAN, historically the first of them, which is quite intuitive and elegant.
Although limited, it can highlight interesting facts about protocols;

• strand spaces, less formal than BPL, but much more precise. Even though
the proof system itself is not formal, strand spaces introduce formal no-
tations and reasonings for protocols and are the starting point of other
formal proofs systems;

• PCL, the most advanced, and also the most intricate one. The whole
system is unpractical outside of a proof assistant. An implementation of
this theory in Isabelle has been initiated, but it is not really operational;

• BPL, similar to PCL, but considerably simplified. It is also unpractical to
use it “on the paper” (maybe even more than PCL, this is a drawback of
the more rigourous formalization), and the implementation of a tool (in
ML) has been initiated, but is not really operational either. Considering
only authentication properties also makes it unable to deal directly with
protocols involving session keys (and most of today’s protocols involve
them). A workaround to this limitation can be additional non-logical
axioms.
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During this internship, I worked mainly on PCL and BPL. I looked on both
implementations. I also considered the problem of bridging these formal ap-
proaches and the computational approach in a way similar to Micciancio and
Warinschi [22]. Further work may result in the release of a practical proof
assistant for BPL and computational results about BPL.
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